SUBELEMENT T5

Electrical Principles

[4 Exam Questions]

T5A01

ELECTRICAL CURRENT IS MEASURED IN WHICH OF THE FOLLOWING UNITS?

A. Volts
B. Watts
D. Amperes

VOLTS - ELECTROMOTIVE FORCE (EMF), OR POTENTIAL.
 OHMS - RESISTANCE
 WATIS - POWER
 AMPERES - CURRENT

T5A02

ELECTRICAL POWER IS MEASURED IN WHICH OF THE FOLLOWING UNITS?

A. Volts
B. Watts
C. Ohms
D. Amperes

VOLTS - ELECTROMOTIVE FORCE (EMF), OR POTENTIAL.
 OHMS - RESISTANCE
 WATIS - POWER
 AMPERES - CURRENT

T5A03

WHAT IS THE NAME FOR THE FLOW OF ELECTRONS IN AN ELECTRIC CIRCUIT?
A. Voltage
B. Resistance
C. Capacitance
D. Current

THINK OF THIS IN TERMS OF WATER;

 WHAT DO YOU CALL THE FLOW OF WATER? CURRENT

T5A04
WHAT IS THE NAME FOR A CURRENT THAT FLOWS ONLY IN ONE DIRECTION?
A. Alternating current
B. Direct current
C. Normal current
D. Smooth current

Current that flows only in one direction is found primarily in circuits that use batteries as a power source; Cars, handheld devices, etc. There is a positive and a negative. This is referred to as Direct Current, or DC.
Compare that with the electricity and current in your house, which alternates directions -- Alternating Current. There is a "Hot" and a "Neutral", but Neutral is essentially just the ground that the electricity can flow to; the current alternates in a sine wave from negative to positive.

T5A05
WHAT IS THE ELECTRICAL TERM FOR THE ELECTROMOTIVE FORCE (EMF) THAT CAUSES ELECTRON FLOW?
A. Voltage
B. Ampere-hours
C. Capacitance
D. Inductance

Hard to add to what is already in this question, except possibly to explain what the incorrect questions actually mean.

Voltage, of course, is the electrical term for the Electromotive force that causes electron flow.
Capacitance refers to the ability to store energy in a capacitor, which will then oppose a change in voltage.
Inductance refers to the ability to store energy in a coil of wire, which will then oppose a change in current.

Ampere-hours is a term used to indicate the capacity of a battery -- a 50 amperehour battery should be able to provide 1 amp for 50 hours, or 50 amps for 1 hour. Obviously, none of these other answers could refer to EMF.

PREPPERRET

T5A06

HOW MUCH VOLTAGE DOES A MOBILE TRANSCEIVER TYPICALLY REQUIRE?
A. About 12 volts
B. About 30 volts
C. About 120 volts
D. About 240 volts

Car batteries are about 12 volts (technically they are closer to 13.8 volts), and since mobile transceivers are most commonly used in a car they are designed to run at about that.
This is really convenient, because that means that if you get batteries for running your radio you can charge them by running your car.

T5A07

WHICH OF THE FOLLOWING IS A GOOD ELECTRICAL CONDUCTOR?

A. Glass

B. Wood
C. Copper
D. Rubber

As a general rule of thumb, metal tends to be a good conductor. Water can be (though technically it's the minerals in the water that makes it a good conductor -- salt water is a really good conductor, whereas distilled water is a fair insulator).
Most other things, and definitely glass, wood, and rubber, are insulators -- meaning that they don't conduct electricity.

Conductors and Insulators

In a conductor, electric current can flow freely, in an insulator it cannot. Simply stated, most metals are good electrical conductors, most nonmetals are not. Metals are also generally good heat conductors while nonmetals are not.

section of
copper
wire

Neighboring electrons are repulsed by the motion of electrons, creating a chain reaction that propagates through the material at nearly the speed of light.

Copper's valence electrons move freely throughout the solid copper metal

Copper and other metals have a weak hold on their outer or "valence" electrons. Atoms of insulating materials have a tight grip on their outer electrons.

T5A08
WHICH OF THE FOLLOWING IS A GOOD ELECTRICAL INSULATOR?
A. Copper
B. Glass
C. Aluminum
D. Mercury

Most metals are good conductors; all of them conduct electricity to some extent. A conductor is something that electricity can flow through. An insulator is the opposite something that electricity either doesn't flow through or doesn't flow through very well.

- if it's looking for a "conductor" look for something metallic;
- if it's looking for a "insulator", look for something non-metallic.

In this case, glass is the only item listed that isn't a metal, so it's the insulator.

> T5A09

WHAT IS THE NAME FOR A CURRENT THAT REVERSES DIRECTION ON A REGULAR BASIS?
A. Alternating current
B. Direct current
C. Circular current
D. Vertical current

There are two types of current that you need to worry about. The kind in your house is called Alternating Current, because the current alternates (reverses) direction over time (60 times per second in the US, or 60 Hz ; that's 60 times that it goes from positive to negative and back).
The RMS (Root Mean Square) voltage of AC in the US is 110 volts, and we use that because it can be sent over longer distances with less loss than the other type, Direct Current.
The most common use of Direct Current, which always goes the same direction, is circuits powered by a battery, such as a car. Battery systems vary in voltage, but most often in Ham Radio (and in cars) they are 12 volts.
The other two options listed here are just to throw you off.

T5A10
WHICH TERM DESCRIBES THE RATE AT WHICH ELECTRICAL ENERGY IS USED?
A. Resistance
B. Current
C. Power
D. Voltage

Power is the product of the electric current at a specified amount of electromotive force. If you use a water analogy, Current could be seen as the diameter of the hose, where voltage is the amount of force available to push it through. Power would be the actual amount of water that gets through the pipe. If you want more water to go through the pipe, you can either apply more force (voltage) or make the pipe bigger (current).
Resistance is the opposition to the current flow, so it definitely could not be considered a viable answer.

> T5A11

WHAT IS THE UNIT OF ELECTROMOTIVE FORCE?
A. The volt
B. The watt
C. The ampere
D. The ohm

One way to think about electricity in general is the comparison to a water pipe. Volts = The pressure (e.g. how much "force" does the river have). Also known as the electromotive force. How much the electron wants to move in the wire.
Amps = how much water is actually flowing through the pipe. Number of electrons moving at once.
Watts = The total amount of usable water energy the pipe contains. Volts * amps = watts
Thus, as long as you know any two of these items (Amps, Volts, of Watts), you can figure out the third.

T5A12
WHAT DESCRIBES THE NUMBER OF TIMES PER SECOND THAT AN ALTERNATING CURRENT MAKES A COMPLETE CYCLE?
A. Pulse rate
B. Speed
C. Wavelength
D. Frequency

Just remember, the "Frequency" determines how "frequently" the current reverses direction.
Another way to remember is to analyze unit of each term:

- Pulse rate (beat per second)
- speed (meter per second)
- Wavelength (meter)
- Frequency (time per second, or Hz)

T5A13
IN WHICH TYPE OF CIRCUIT IS CURRENT THE SAME THROUGH ALL COMPONENTS?
A. Series
B. Parallel
C. Resonant
D. Branch

In series current is the same through all components.

The voltage is not the same everywhere in this series but the current is! Easy way to remember the difference between series and parallel, is parallel is like train tracks they run side by side. Series is like a movie series, one episode after another.
T5A14

IN WHICH TYPE OF CIRCUIT IS VOLTAGE THE SAME ACROSS ALL COMPONENTS?
A. Series
B. Parallel
C. Resonant
D. Branch

Notice the green is the same across all components. There is full source voltage on one side and no voltage on the other, but voltage is the same across all components because they're in parallel.

T5B01
HOW MANY MILLIAMPERES IS 1.5 AMPERES?
A. 15 milliamperes
B. 150 milliamperes
C. 1500 milliamperes
D. 15,000 milliamperes

The prefix "milli" means "one thousandth", so move the decimal to the right 3 places (or multiply by 1000) to go from amperes to milliamperes.

$1.5 \times 1000=1,500$

A quick way to check each answer is to remember that to convert milliamps to amps, just change the comma to a decimal point. $1,500 \mathrm{~mA}=1.500 \mathrm{~A}$

- Extensive table to right
- Most useful prefixes are:
- Mega $=1,000,000$
- Kilo $=1,000$
- Milli $=1 / 1,000$
- Micro $=1 / 1,000,000$
- Pico =
$1 / 1,000,000,000,000$ (one trillionth)

Table 2-1		
International System of Units (SI)-Metric Units		
Prefix	Symbol	Multiplication Factor
Tera	T	$10^{12}=1,000,000,000,000$
Giga	G	$10^{\circ}=1,000,000,000$
Mega	M	$10^{6}=1,000,000$
Kilo	k	$10^{3}=1000$
Hecto	h	$10^{2}=100$
Deca	da	$10^{\prime}=10$
Deci	d	$10^{-1}=0.1$
Centi	c	$10^{-2}=0.01$
Milli	m	$10^{-3}=0.001$
Micro	μ	$10^{-6}=0.000001$
Nano	n	$10^{9}=0.000000001$
Pico	p	$10^{12}=0.000000000001$

T5B02

WHAT IS ANOTHER WAY TO SPECIFY A RADIO SIGNAL FREQUENCY OF 1,500,000 HERTZ?

A. 1500 kHz
B. 1500 MHz
C. 15 GHz
D. 150 kHz

Pay attention when you get these questions; approximately 30% of applicants who saw this question over a 2 year period answered 1500 MHz instead of 1500 kHz , and I'm pretty sure that they actually did know how to do the conversion. It would of course be 1.5 MHz , but it is certainly not 1500 MHz .

$$
1,000 \mathrm{~Hz}=1 \mathrm{kHz}
$$

$1,500,000 \mathrm{~Hz} 1 \mathrm{kHz}=1500 \mathrm{kHz}$

T5B03
HOW MANY VOLTS ARE EQUAL TO ONE KILOVOLT?
A. One one-thousandth of a volt
B. One hundred volts
C. One thousand volts
D. One million volts

The prefix "kilo", commonly used in all metric forms of measurement, means "thousand". Thus, a "kilovolt" is a thousand volts.

T5B04
 HOW MANY VOLTS ARE EQUAL TO ONE MICROVOLT?

A. One one-millionth of a volt
B. One million volts
C. One thousand kilovolts
D. One one-thousandth of a volt
"micro" is a prefix in the metric system meaning "one-millionth". Thus, a microvolt is one millionth $\frac{1}{1,000,000}$ of a volt

T5B05
WHICH OF THE FOLLOWING IS EQUAL TO 500 MILLIWATTS?
A. 0.02 watts
B. 0.5 watts
C. 5 watts
D. 50 watts

1000 milliwatts = 1 watt (remember that there are 10 mm in 1 cm and 100 cm in a meter; or 1000 millimeters in a meter)

1000 milliwatts $=1$ watt
$\frac{500}{1000}=0.5$ watts

T5B06
IF AN AMMETER CALIBRATED IN AMPERES IS USED TO MEASURE A 3000-MILLIAMPERE CURRENT, WHAT READING WOULD IT SHOW?
A. 0.003 amperes
B. 0.3 amperes
C. 3 amperes
D. 3,000,000 amperes

Remember your standard metrics; the ammeter is reading amperes, so 1000 milliamperes is 1 ampere, and 3000 milliamperes is 3 amperes.

Milliamp $($ milliampere $)=\frac{1}{1,000}$ of amp $($ ampere $)$

T5B07
IF A FREQUENCY DISPLAY CALIBRATED IN MEGAHERTZ SHOWS A READING OF 3.525 MHZ , WHAT WOULD IT SHOW IF IT WERE CALIBRATED IN KILOHERTZ?
A. 0.003525 kHz
B. 35.25 kHz
C. 3525 kHz
D. $3,525,000 \mathrm{kHz}$

MHz is 1,000 times more than kHz or...
$1 \mathrm{MHz}=1,000 \mathrm{kHz}$
M is Mega $=10^{6}$
k is Kilo $=10^{3}$
Therefore: $\frac{3.525 \mathrm{MHz} \times 1000 \mathrm{kHz}}{1 \mathrm{MHz}}=3525 \mathrm{kHz}$
Since we are multiplying by 1 , we do not change the value of what is represented.

T5B08

HOW MANY MICROFARADS ARE EQUAL TO $1,000,000$ PICOFARADS?
A. 0.001 microfarads
B. 1 microfarad
C. 1000 microfarads
D. $1,000,000,000$ microfarads

Remember the order of your metric units!

> 1 farad = 1,000 millifarads $(m F)$
> 1 millifarad $=1,000$ microfarads (μF)
> 1 microfarad $=1,000$ nanofarads $(n F)$
> 1 nanofarad $=1,000$ picofarads $(p F)$

Therefore $1,000,000$ picofarads $=1,000$ nanofarads $=1$ microfarad
Or group using decimals: $1,000,000 \mathrm{pF} \times .000000000001 \mathrm{~F} / \mathrm{pF}$ pF cancels out and you get

$$
.000001 F=1 \mu F
$$

And if you're feeling scientific use exponents: $106 \mathrm{pF}=106 \times 10-12 \mathrm{~F}=106-12 \mathrm{~F}=10-6 \mathrm{~F}=1 \mu \mathrm{~F}$

Metric Conversion						
King	$\mathrm{H}_{\text {enry }}$	$\mathrm{D}_{\mathrm{ied}}$	Unusually OU, की, σ	Drinking	Chocolate	$\mathrm{M}_{\text {ilk }}$
	Hecto $10 \times 10 \times$ LARGER than a unit 1 hecto = 100 units	Deca 10x LARGER than a unit 1 deca $=$ 10 units	* Unit * Meter (length) Liter (liquid volume) Gram (mass/weight) 1 unit	Deci 10x SMALLER than a unit 10 deci $=$ 1 unit	Centi $10 \times 10 \times$ SMALLER than a unit 100 centi $=$ 1 unit	$\begin{gathered} \text { Milli } \\ 10 \times 10 \times 10 \times \\ \text { SMALLER } \\ \text { than a unit } \\ 1,000 \text { milli } \\ =1 \text { unit } \end{gathered}$
$\begin{aligned} & \text { km=kilometer } \\ & \mathrm{k}=\mathrm{k}=\text { kiloiter } \\ & \mathrm{kg}=\mathrm{k} \text { kiogram } \end{aligned}$	$\mathrm{hm}=$ hectometer $\mathrm{hL}=$ hectoliter $\mathrm{hg}=$ hectogram	dam = decameter daL = decaliter dag $=$ decagram	$\begin{gathered} \mathrm{m}=\text { meter } \\ \mathrm{L}=\mathrm{liter} \\ \mathrm{~g}=\text { gram } \end{gathered}$	$\begin{aligned} & \text { dm = decimeter } \\ & d=\text { deciliter } \\ & d g=\text { decigram } \end{aligned}$	$\mathrm{cm}=$ centimeter $\mathrm{cL}=$ centiliter $\mathrm{cg}=$ centigram	$\begin{array}{\|c\|c\|c\|c\|l\|l\|l\|c\|c\|} \hline m \mathrm{~mL} \\ \mathrm{~mL} \text { = milliliter } \\ \mathrm{mg}=\text { miligram } \end{array}$

T5B09
WHAT IS THE APPROXIMATE AMOUNT OF CHANGE, MEASURED IN DECIBELS (DB), OF A POWER INCREASE FROM 5 WATTS TO 10 WATTS?
A. 2 dB
B. 3 dB
C. 5 dB
D. 10 dB

When dealing with decibels, every 3 dB of gain doubles the power, and every 3 dB of loss halves it. So, 5 watts to 10 watts is twice the power, so it is 3 dB . 5 watts to 20 watts would be four times the power, or $2 \times 2 \times P$ (where P is power), or 6 dB . 9 dB would be 40 watts, 12 dB would be 80 watts, etc.

Similarly, -3 dB would be 2.5 watts, since -3 dB is half the power, and -6 dB would be half of that, -9 dB half of that, etc.

T5B10
WHAT IS THE APPROXIMATE AMOUNT OF CHANGE, MEASURED IN DECIBELS (DB), OF A POWER DECREASE FROM 12 WATTS TO 3 WATTS?
A. -1 dB
B. -3 dB
C. -6 dB
D. -9 dB

When dealing with decibels, every 3 dB of gain doubles the power, and every 3 dB of loss halves it. So, 5 watts to 10 watts is twice the power, so it is 3 dB . 5 watts to 20 watts would be four times the power, or $2 \times 2 \times P$ (where P is power), or 6 dB . 9 dB would be 40 watts, 12 dB would be 80 watts, etc.

Similarly, -3 dB would be 2.5 watts, since -3 dB is half the power, and -6 dB would be half of that, -9 dB half of that, etc.

Decibels

- The decibel (dB) is used to compare two power levels using a logarithmic scale
- Calculating in decibels (dB) is the same as using logarithms
- Adding/subtracting logarithms of numbers is equivalent to multiplying or dividing by the numbers
- A ratio of $2: 1$ is a difference of 3 dB
- A ratio of $10: 1$ is a difference of 10 dB
- Examples:
- $3 \mathrm{~dB}+3 \mathrm{~dB}=6 \mathrm{~dB}$ is the same as 2×2 or $4: 1$
- $3 \mathrm{~dB}+10 \mathrm{~dB}=13 \mathrm{~dB}$ is the same as 2×10 or 20:1
- $10 \mathrm{~dB}+10 \mathrm{~dB}+10 \mathrm{~dB}=30 \mathrm{~dB}$ is the same as $10 \times 10 \mathrm{x}$ 10 or 1000:1

T5B11
WHAT IS THE AMOUNT OF CHANGE, MEASURED IN DECIBELS (DB), OF A POWER INCREASE FROM 20 WATTS TO 200 WATTS?
A. 10 dB
B. 12 dB
C. 18 dB
D. 28 dB

Every 3dB of gain doubles the power
Every -3 dB of gain (or 3 dB of loss) halves it.

So, looking at this, 3 dB of gain would be $20 \times 2=40$. 6 dB would be $20 \times 2 \times 2=80$.
9 dB would be $20 \times 2 \times 2 \times 2=160$
12 dB would be $20 \times 2 \times 2 \times 2 \times 2=320$, which is too high,
so you know it isn't 12 but it's more than 9; it must be 10

T5B12
WHICH OF THE FOLLOWING FREQUENCIES IS EQUAL TO $28,400 \mathrm{KHZ}$?
A. $\mathbf{2 8 . 4 0 0} \mathbf{M H z}$
B. 2.800 MHz
C. 284.00 MHz
D. 28.400 kHz

To convert kHz to Mhz, move the decimal point three positions to the leff.
With $28,400 \mathrm{KHz}$ the decimal point is assumed to be all the way to the right of 28400 .

So to begin with, we have 28400. kHz (I took out the comma and put in the trailing decimal point to make it easier to see what's going on).
So moving the decimal point three positions to the left, it ends up between the 28 and the 400 , so 28.400 MHz .

T5B13
IF A FREQUENCY DISPLAY SHOWS A READING OF 2425 MHZ , WHAT FREQUENCY IS THAT IN GHZ?
A. 0.002425 GHz
B. 24.25 GHz
C. 2.425 GHz
D. 2425 GHz

To convert from MHz to GHz , move the decimal point three positions to the left.

Starting with 2425.0 MHz , move the decimal point three positions to the left, ending up between the 2 and 425 , so 2.425 GHz .

T5C01
WHAT IS THE ABILITY TO STORE ENERGY IN AN ELECTRIC FIELD CALLED?
A. Inductance
B. Resistance
C. Tolerance
D. Capacitance

A capacitor is a passive component that consists of at least one pair of conductors separated by a dielectric (an insulator). When voltage is applied to the capacitor (creating a difference in potential between the two) it creates an electric field across the dielectric which stores energy.
The easiest way for me to remember these is that an inductor, being a coil of wire, is used to create an electromagnet (you can make an electromagnet by wrapping a coil of insulated wire around a nail, for example), and so an inductor stores energy in a magnetic field. The capacitor stores energy in an electric field.

What is the ability to store energy in a MAGNETIC field called? Inductance What is the ability to store energy in an ELECTRIC field called? Capacitance

Capacitors

Electrolytic capacitors (polarized, high capacity)
$\dashv \vdash$ Capacitor

Capacitors are conductive plates separated by an insulator and stores energy in an electric field (electrostatically)

T5C02

WHAT IS THE BASIC UNIT OF CAPACITANCE?
A. The farad
B. The ohm
C. The volt
D. The henry

The basic unit of capacitance, the Farad, is named for the physicist Michael Faraday.
The other units listed here are:
Volt - basic unit of voltage
Ohm - basic unit of resistance
Henry - basic unit of inductance

T5C03
WHAT IS THE ABILITY TO STORE ENERGY IN A MAGNETIC FIELD CALLED?
A. Admittance
B. Capacitance
C. Resistance
D. Inductance

An inductor is a coil of wire, usually around a non-ferrite (nonmagnetic) core. The basic unit of inductance is the henry.
Whenever you make a coil of wire, it creates a magnetic field; think of an electromagnet, which is basically an inductor with a ferrite core. The ability to store energy in such a field is Inductance. So remember -- inductance creates a magnetic field.

Capacitance has a very similar (and in fact opposite) effect to an inductor and creates an electric field.

Inductors

Som Inductor

$$
\begin{aligned}
& \text { 解的 } \\
& \text { en } \\
& \text { 明 } \\
& \text { - }
\end{aligned}
$$

Inductors are generally coils of wire that store energy in a magnetic field

T5C04
WHAT IS THE BASIC UNIT OF INDUCTANCE?
A. The coulomb
B. The farad
C. The henry
D. The ohm

An inductor is a passive electrical component that stores energy in a magnetic field; its unit is the henry, which is named for Joseph Henry.

The other (incorrect) answers here are:
Coulomb - unit of electric charge
Farad - unit of capacitance
Ohm - unit of resistance

Another quick memory tool is to remember Henry the Duck...

T5C05
WHAT IS THE UNIT OF FREQUENCY?
A. Hertz
B. Henry
C. Farad
D. Tesla

Hertz is the standard unit for frequency, as used in the SI unit system. It is defined as the number of cycles per second of something periodic.

For example a clock ticks at 1 Hz . The wall outlet AC is set to 60 Hz . The unit is named after Heinrich Hertz.

The other (incorrect) answers here are:
Farad - unit of capacitance
Henry - unit of inductance
Tesla - unit of magnetic field strength.

T5C06
 WHAT DOES THE ABBREVIATION "RF" REFER TO?

A. Radio frequency signals of all types
B. The resonant frequency of a tuned circuit
C. The real frequency transmitted as opposed to the apparent frequency
D. Reflective force in antenna transmission lines

RF is "Radio Frequency"
it's not reflected force or any of these other choices.
Just learn this one.

A RADIO WAVE IS MADE UP OF WHAT TYPE OF ENERGY?

A. Pressure
B. Electromagnetic
C. Gravity
D. Thermal

Radio waves are a type of electromagnetic (EM) radiation with wavelengths in the electromagnetic spectrum longer than infrared light.

Radio waves have frequencies as high as 300 GHz to as low as 3 kHz , though some definitions describe waves above 1 or 3 GHz as microwaves, or include waves of any lower frequency.
EM waves are made up of magnetic field and electric field oscillations in phase with each other, but their direction is perpendicular.

T5C08
 WHAT IS THE FORMULA USED TO CALCULATE ELECTRICAL POWER IN A DC CIRCUIT?

A. Power (P) equals voltage (E) multiplied by current (I)
B. Power (P) equals voltage (E) divided by current (I)
C. Power (P) equals voltage (E) minus current (I)
D. Power (P) equals voltage (E) plus current (I)

PREPPERRIET

T5C09
HOW MUCH POWER IS BEING USED IN A CIRCUIT WHEN THE APPLIED VOLTAGE IS 13.8 VOLTS DC AND THE CURRENT IS 10 AMPERES?

A. 138 watts

B. 0.7 watts
C. 23.8 watts
D. 3.8 watts

P = E X I

WATTS $=$ VOLTS \times AMPS

$$
P(\text { WATTS })=13.8 \mathrm{~V} \mathrm{X}
$$

$$
10 \mathrm{~A}
$$

$$
P=138 \mathrm{~W}
$$

T5C10
HOW MUCH POWER IS BEING USED IN A CIRCUIT WHEN THE APPLIED VOLTAGE IS 12 VOLTS DC AND THE CURRENT IS 2.5 AMPERES?
A. 4.8 watts
B. 30 watts
C. 14.5 watts
D. 0.208 watts

$P=P O W E R-W A T T S$
$\mathrm{E}=\mathrm{WOLTAGE}$, POTENTIAL, EMF -WOLTS
I = CURRENT - AMPS
$P=E X I$
WATTS = VOLTS x AMPS
$P($ WATTS $)=12 \mathrm{~V} \mathrm{X}$ 2.5A

$$
P=30 \mathrm{~W}
$$

T5C11

HOW MANY AMPERES ARE FLOWING IN A CIRCUIT WHEN THE APPLIED VOLTAGE IS 12 VOLTS DC AND THE LOAD IS 120 WATTS?
A. 0.1 amperes
B. 10 amperes
C. 12 amperes
D. 132 amperes

$$
P=E X I
$$

$$
\mathrm{E}=\mathrm{P} \mathrm{I} I
$$

$$
\begin{gathered}
I(\mathrm{AMPS})=\frac{P(W A T T S)}{E(V O L T S)} \\
I(\mathrm{AMPS})=\frac{120 \mathrm{~W}}{12 \mathrm{~V}} \\
\mathrm{I}=10 \mathrm{~A}
\end{gathered}
$$

T5C12
WHAT IS IMPEDANCE?
A. A measure of the opposition to AC current flow in a circuit
B. The inverse of resistance
C. The Q or Quality Factor of a component
D. The power handling capability of a component

The inverse of resistance is conductance (the measure is the Mho - can you see how this is related to Ohm?). So that's not the answer.

The measure of Q is something covered on the General and Extra exams - it's too deep for the Technician exam. So that's not the answer.

Power handling capability? Power is measured in Watts, so the power handling capability would be measured in Watts. Components are certainly rated in things like Watts and Volts and even Amps, but none of those things are called impedance. So that's not the answer.

And that leaves "It is a measure of the opposition to AC current flow in a circuit." Impedance, incidentally, is measured in Ohms.

T5C13
WHAT IS A UNIT OF IMPEDANCE?
A. Volts
B. Amperes
C. Coulombs
D. Ohms

Impedance is actually very similar to resistance in many ways -- which makes sense, since impede and resist are roughly synonymous.
Thus it makes sense that they share the same unit -- Ohms.

The main difference between resistance and impedance is that impedance changes with frequency.
Inductors pass direct current (frequency of 0) but have a higher impedance the higher the frequency, since inductors tend to resist changes in current.

Capacitors have infinite impedance with DC and the higher the frequency the lower the impedance (capacitors resist changes in voltage).

T5C14
WHAT IS THE PROPER ABBREVIATION FOR MEGAHERTZ?
A. mHz
B. mhz
C. Mhz
D. $\mathbf{M H z}$
M is the SI abbreviation for mega, indicating millions or $\times 10^{6}$ (6 zeros)
Hz is the SI unit abbreviation for Hertz or cycles per second.

Therefore the proper abbreviation for megahertz is..
MHz

T5D01
 WHAT FORMULA IS USED TO CALCULATE CURRENT IN A CIRCUIT?

A. Current (I) equals voltage (E) multiplied by resistance (R)
B. Current (I) equals voltage (E) divided by resistance (R)
C. Current (I) equals voltage (E) added to resistance (R)
D. Current (I) equals voltage (E) minus resistance (R)

T5D02

WHAT FORMULA IS USED TO CALCULATE VOLTAGE IN A CIRCUIT?
A. Voltage (E) equals current (I) multiplied by resistance (R)
B. Voltage (E) equals current (I) divided by resistance (R)
C. Voltage (E) equals current (I) added to resistance (R)
D. Voltage (E) equals current (I) minus resistance (R)

T5D03
 WHAT FORMULA IS USED TO CALCULATE RESISTANCE IN A CIRCUIT?

A. Resistance (R) equals voltage (E) multiplied by current (I)
B. Resistance (R) equals voltage (E) divided by current (I)
C. Resistance (R) equals voltage (E) added to current (I)
D. Resistance (R) equals voltage (E) minus current (I)

T5D04
WHAT IS THE RESISTANCE OF A CIRCUIT IN WHICH A CURRENT OF 3 AMPERES FLOWS THROUGH A RESISTOR CONNECTED TO 90 VOLTS?
A. 3 ohms
B. 30 ohms
C. 93 ohms
D. 270 ohms

$\mathrm{R}(\mathrm{OHMS})=\frac{E(\text { VOLTS })}{I(\text { AMPS })}$

$$
\mathrm{R}(\mathrm{OHMS})=\frac{90 V}{3 A}
$$

$$
R=30 \Omega
$$

T5D05
WHAT IS THE RESISTANCE IN A CIRCUIT FOR WHICH THE APPLIED VOLTAGE IS 12 VOLTS AND THE CURRENT FLOW IS 1.5 AMPERES?
A. 18 ohms
B. 0.125 ohms
C. 8 ohms
D. 13.5 ohms

$\mathrm{R}(\mathrm{OHMS})=\frac{E(\text { VOLTS })}{I(\text { AMPS })}$
$R(O H M S)=\frac{12 V}{1.5 A}$

$$
R=8 \Omega
$$

T5D06

WHAT IS THE RESISTANCE OF A CIRCUIT THAT DRAWS 4 AMPERES FROM A 12-VOLT SOURCE?
A. 3 ohms
B. 16 ohms
C. 48 ohms
D. 8 ohms

$\mathrm{R}(\mathrm{OHMS})=\frac{E(\text { VOLTS })}{I(\text { AMPS })}$

$$
R(O H M S)=\frac{12 V}{4 A}
$$

$$
R=3 \Omega
$$

T5D07
WHAT IS THE CURRENT IN A CIRCUIT WITH AN APPLIED VOLTAGE OF 120 VOLTS AND A RESISTANCE OF 80 OHMS?
A. 9600 amperes
B. 200 amperes
C. 0.667 amperes
D. 1.5 amperes

$I(\mathrm{AMPS})=\frac{E(\text { VOLTS })}{R(\text { OHMS })}$
$I($ AMPS $)=\frac{120 \mathrm{~V}}{80 \Omega}$

$$
I=1.5 \mathrm{~A}
$$

T5D08

WHAT IS THE CURRENT THROUGH A 100-OHM RESISTOR CONNECTED ACROSS 200 VOLTS?
A. 20,000 amperes
B. 0.5 amperes
C. 2 amperes
D. 100 amperes

$I(\mathrm{AMPS})=\frac{E(\text { VOLTS })}{R(\text { OHMS })}$

$$
I(\text { AMPS })=\frac{200 \mathrm{~V}}{100 \Omega}
$$

$$
I=2 A
$$

T5D09

WHAT IS THE CURRENT THROUGH A 24-OHM RESISTOR CONNECTED ACROSS 240 VOLTS?
A. 24,000 amperes
B. 0.1 amperes
C. 10 amperes
D. 216 amperes

$I(\mathrm{AMPS})=\frac{E(\text { VOLTS })}{R(\text { OHMS })}$

$$
I(\text { AMPS })=\frac{240 \mathrm{~V}}{24 \Omega}
$$

$$
I=10 A
$$

T5D10
WHAT IS THE VOLTAGE ACROSS A 2-OHM RESISTOR IF A CURRENT OF 0.5 AMPERES FLOWS THROUGH IT?
A. 1 volt
B. 0.25 volts
C. 2.5 volts
D. 1.5 volts

$R=\frac{E}{I}$
$I=\frac{E}{R}$

E(VOLTS) = I (AMPS) X R (OHMS)

$E($ VOLTS $)=0.5 \mathrm{AX} 2 \Omega$

$$
E=1 V
$$

T5D11
WHAT IS THE VOLTAGE ACROSS A 10-OHM RESISTOR IF A CURRENT OF 1 AMPERE FLOWS THROUGH IT?
A. 1 volt
B. 10 volts
C. 11 volts
D. 9 volts

E(VOLTS) = I (AMPS) X R (OHMS)

$E($ VOLTS $)=1 A \times 10 \Omega$

$$
E=10 V
$$

T5D12
WHAT IS THE VOLTAGE ACROSS A 10-OHM RESISTOR IF A CURRENT OF 2 AMPERES FLOWS THROUGH IT?
A. 8 volts
B. 0.2 volts
C. 12 volts
D. 20 volts

E(VOLTS) = I (AMPS) X R (OHMS)
$E($ VOLTS $)=2 A \times 10 \Omega$
$$
E=20 V
$$

T5D13

WHAT HAPPENS TO CURRENT AT THE JUNCTION OF TWO COMPONENTS IN SERIES?

A. It divides equally between them
B. It is unchanged
C. It divides based on the on the value of the components
D. The current in the second component is zero

The current is determined by the total resistance through the whole series so the current at the junction is unchanged as can be seen from the fact that all three test points show 10 mA , and the dots move at the same speed through the whole series.

T5D14
WHAT HAPPENS TO CURRENT AT THE JUNCTION OF TWO COMPONENTS IN PARALLEL?
A. It divides between them dependent on the value of the components
B. It is the same in both components
C. Its value doubles
D. Its value is halved

Notice that across the components in parallel the current (85 mA) is divided between the components based on the value of the components
In this case the components are resistors and their values are resistance in ohms. The dots are moving faster through the 100Ω resistor than they are through the 500Ω resistor. The speed of the dots indicates the amount of current, indicating less current through the higher value resistors.

T5D15
WHAT IS THE VOLTAGE ACROSS EACH OF TWO COMPONENTS IN SERIES WITH A VOLTAGE SOURCE?
A. The same voltage as the source
B. Half the source voltage
C. It is determined by the type and value of the components
D. Twice the source voltage

The current in the series doesn't change, but the voltage across each of the two components does change. So it is determined by the type and value of the components, in this case the resistance of the resistors.

T5D16
WHAT IS THE VOLTAGE ACROSS EACH OF TWO COMPONENTS IN PARALLEL WITH A VOLTAGE SOURCE?
A. It is determined by the type and value of the components
B. Half the source voltage
C. Twice the source voltage
D. The same voltage as the source

Notice that across the components in parallel the voltage (5V) is the same as the voltage source..
The values of the resistors have no effect.

